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Abstract The critical probabilities p~ = pr(Q) and P H  = p ~ f Q )  of the random cluster model 
with parameter Q < P H ,  
PH < Q ( l  - p r ) / ( p r  + Q(I - p r ) ) .  The 1st inequality is the Q-analogue of the relation 
pr  + p x  < 1 of ordinary (Q = 1) percolation. lhough of course in this case equality holds. 

1 on the square lattice ax shown la satisfy pr  ,< al (1  -k 

1. Introduction 

The main purpose of this paper is to examine the pemolatory behaviour of the random 
-cluster process on the square lattice. This process, which was introduced by Fortuin and 
Kasteleyn (1972) contains ordinary percolation, the king model, and the Q-state Potts model 
as special cases, corresponding to giving Q positive integer values and complete knowledge 
of its critical behaviour would answer several longstahding problems of statistical physics. 
Here we allow Q to take arbitrary non-negative values. Thus when Q is not an integer 
the random cluster model is a genuine extension of the Potts model. For a discussion of 
the applications and physical background we refer to the papers of Aizenman et a1 (1988). 
Aizenman and Grimmett (1991), Bezuidenhout et nl (1992). Fortuin (1972), Edweirds and 
Sokal (1988), Gandolfi eta1 (1992). Sokal (1989) and Wu (1982). 

This paper makes no attempt at generality but concentrates on the combinatorial aspect 
of the finite model and the special (and presumably easiest) case of the two-dimensional 
square lattice. Edge interactions (or probabilities) are assumed to be aconstant p and'so the 
fundamental quantity of interest is the percolation probability B(p,  Q) which, when Q = 1 
reduces to the usual percolation probability, when Q = 2 (the-king model case) it reduces 
to a version of correlated percolation studied by Hammersley and Mazzarino (1983) which 
was one of the original motivations for this paper. 

The terminology of percolation theory and graph theory is standard and is based 
principally on that used in Grimmett (1989). Other terms are defined as they are encountered. 

2. The random cluster model 

The general random cluster model on a finite graph G (represented as the pair ( V ,  E ) )  is 
a generalized. bond percolation model on the edge set E of G defined by the probability 
distribution 
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2412 D J A Welsh 

where k ( A )  is the number of connected components (including isolated vertices) of the 
subgraph G : A = ( V ,  A ) ,  pe (0 < p. < 1) are parameters associated with each edge of G, 
Q 2 0 is a parameter of the model,~and 2 is the normalizing constant introduced so that 

We will sometimes use o(G) to denote the random configuration produced by p, and PK 
to denote the associated probability distribution. 

Thus, in particular, p(A)  = P,(o(G) = A ] .  When Q = 1, I.L is what Fortuin and 
Kasteleyn call a percolaion model and when each of the pe are made equal, say to p. then 
@ ( A )  is clearly seen to be the probability that the set of open edges is A in bond percolation. 
When Q = 2 we have the Ising model with zero magnetic field and for general positive 
integer Q we have the Q-stare Potts model. Thus, in a sense, the random cluster model 
defines an analytic continuation of the Potts model to non-integer Q.  

For an account of the many different interpretations of the random cluster model we 
refer to the original paper of Fortuin and Kasteleyn (1972) or Sokal (1989). 

In this paper we shall be concentrating on the percolation problem when each of the pe 
are equal, to say p ,  and henceforth this will be assumed. 

Thus we will be concerned with a two parameter family of probability measures 

IL=P(P.Q)  0 6 p S 1  Q > O  

defined on the edge set of the finite graph G = (V, E )  by 

& ( A )  = ,,lAIqlE\AI ~ k ' A 1 i z  

where Z is the appropriate normalizing constant, and q = 1 - p .  
Probably the principal reason for studying percolation in the random cluster model is 

its relation to phase transitions via the two-point correlation function. This was first pointed 
out by Fortuin and Kasteleyn (1972) and given further prominence recently by Edwards 
and Sokal (1988) in connection with the Swendsen-Wang algorithm (Swendsen and Wang 
1987) for the Potts model. We briefly describe the connection. 

Let Q be a positive integer and consider the Q-state Potts model on a finite graph G. If 
U = (o(l), . . . , cT(m)) denotes a set of spins on the vertex set (1,. . . , m )  of G, each spin 
ut can take a value in the set ( I ,  2,.  . . , Q ) .  The Hamiltonian X ( u )  is defined by 

H(u) = JijCl - X u ( i ) , d j ) ) )  

where Jij are the interaction energies and the partition function is 

ij 

z = z e x p [ - ~ ( u ) l .  
b l  

The probability of finding the system in the state U is given by 

P(U) = e-H(u)/Z. 

Now let ( ) denote expectation with respect to this Gibbs distribution and the key result is 
that, for any pair of sites (vertices) i, j 

j l  (2.2) 
1 ( Q -  
Q Q (S(o(i). o(i))) = - + - 
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where S is the normal delta function and PF is the random cluster measure on G given by 
taking pe = 1 - exp(-Jjj) for each edge e = ( i j ) .  

The attractive interpretation of this is that the expression on the right-hand side can be 
regarded as being made up of two components. 

The first term, I/Q, is just the ,probability that under a purely random Q-colouring of 
the vertices of G, i and j are the same colour. The second term measures the probability of 
long range interaction. Since the left-hand side of (2.2) is just the probability that i and j 
have the same spin (or colour) we interpret (2.2) as expressing an equivalence, when i and 
j are far apart, between long-range spin correlations and long-range percolatory behaviour. 

Phase transition (in an infinite system) occurs at the onset of an infinite cluster in the 
random cluster model and corresponds to the spins on the vertices of the Potts model having 
a long range two-point correlation. 

3. The partition function 

In order to be able to calculate, or even simulate, the Gibbs state probabilities it seems 
to be necessaly to know (or be able to approximate) the partition function 2, In the case 
of ordinary percolation, Q = 1 and Z = 1, but in general determining Z is demonstrably 
difficult as we now show. 

We need first to define the rank function on the edge set E of a graph G. For A C E ,  
the rank of A, r ( A )  is defined by 

where k(A)  is the number of connected components of the graph G : A. 

integer valued and submodular, in that for A ,  B E E 
The key properties of the rank~function that we need to note are that it is non-decreasing, 

r ( A ) + r ( B )  > r ( A U B ) + r ( A n B ) .  (3.2) 

The Tufte polynomial T(C: x ,  y) of G is the two-variable polynomial defined by 

This is not the way it was originally defined, nor is it the most convenient to use for 
calculations, however it will suffice at this stage. Further details and a list of propeaies 
of T including its relation to knots, percolation, codes and many other invariants may be 
found in Jaeger et a1 (1990). 

Fortuin and Kasteleyn (1972) were aware of a relationship between the random cluster 
model and the Tutte polynomial which we express in the following proposition. 

Proposition 3.4. 
given by 

For any finite graph G and subset A of E(G), the Gibbs probability fi is 

where T is the Tutte polynomial of G, and where q = 1 - p. 
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A first consequence of this is that this shows that in a very formal sense determining 

This is because it was shown in Vertigan and Welsh (1992) that: 
the Gibbs probability p is an intractable problem for most Q and most graphs. 

(3.5) Computing the Tutte polynomial of a planar bipartite graph is #P-hard except when 
Q = 1 or Q = 2. 

Now to describe a problem as #P-hard means that it is at least as hard as any ‘sensible’ 
counting problem, such as determining the number of satisfying truth assignments of a 
Boolean formula or the number of Hamiltonian paths of a graph. In other words: 

(3.6) Determining Z ( p ,  Q )  and hence p, even for bipartite planargraphs, is #P-hard except 
when Q = 1 or 2. 

By Kasteleyn’s algorithm (Kasteleyn 1963), we know there is a polynomial time 
algorithm for determining Z ( p ,  2) for planar graphs. 

An obvious quantity of interest in the random cluster model is the probability that a 
particular set is open. We call this the distributionfunction, denote it by h and note: 

(3.7) For fixed p ,  the distribution function A is a monotone non-increasing function of Q, 
for Q 2 1. 

Problem. How does A vary with Q when 0 < Q < I? 

I do not see how to answer this but there is some slight evidence below that monotonicity 

The probability that w ,  the random subgraph of G determined by the open edges under 
p ( p ,  Q ) ,  is connected is known as the reliubihyprobubility, 

extends to this region also. 

a random cluster measure p 
and is denoted by 

Rel(G) = Rel(G; p ,  Q )  = p ( A )  
AESICI 

where Sc denotes all subsets of edges which are spanning and connected. In other words 
A E Sc(G) iff r ( A )  = r ( E ) .  Using this and proposition 3.4 we get 

(3.9) 

But recall that 
T ( G ;  x ,  y)  = E(x - I)’(=J-r(A) ( y  - 1)1Al-r(Al 

ASE 

so that 

( y  - l)iA’-r.cE1 = T(C. 7 ,  1 y ) .  
A:r(Al=rtEl 

Using this in (3.8) with y - 1 = p / q ,  gives for any finite G and any Q > 0, 0 6 p 6 1 

(3.10) 

This shows that reliability is monotone in Q for all Q 2 0, not just Q > I 
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Theorem 3.11. For Q > 0, the reliability probability is a strictly monotone decreasing 
function of Q, for fixed p .  

ProoJ From (3.10) we know that for any finite G 

R e G ;  P ,  Q d  =. Rel(G; P ,  Qz)  o T ( G ;  1 + Q ~ q l p .  l lq )  >~T(G; 1 + Q d p .  lid. 
But T(G; x ,  y) = Ctijx'yj and the coefficients ti1 are known to be non-negative integers 
not all of which can be zero. 0 

4. The dual measure 

Consider a random cluster model p = p ( p ,  Q )   on^ E the edge set E of a planar graph G 
and let G* be the dual plane graph with edge set also E identified in the natural and obvious 
way. 

G* has rank function r* where r* is defined by 

r*(E\A) = IEl - r ( E )  - IAl + r ( A ) .  (4.1) 

T ( G ; x , y )  = T ( G * ; y , n ) .  (4.2j 

Note, that 
, .  

For the purposes of this section we identify an edge being open with being coloured 
black, closed with being coloured white. This is helpful and not uncommon in percolation 
theory, see for example Hammersley and Mazzarino (1983). 

We now define the dual measure b of p = p ( p ,  Q) to be the random cluster measure 
fi(j% Q )  where 

thus 

Proposition 4.3: For any plane graph G and random cluster measure p 

P, [o (G)  = A }  = Pi{@(G*) = E\A}. 

Corollary 4.4. If C, G' are dual planar graphs, f i  on.@ produces white configurations 
with exactly the same probability distribution as p produces black configurations on G. 

Prooj 

by substituting from ~(4.1). 0 
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5. The percolation probability 

We now tum to consider percolation in the random cluster model on the square lattice. We 
adopt the terminology of ordinary (Q = 1) percolation as much as possible and in particular 
follow the notation of Grimmett (1989). 

Let A, denote the box on the square lattice having comers (rtn,  &a). Let p ,  Q be fixed 
and let @,,, = &,(p, Q) be the sequence of random cluster measures induced by A,,,, as m 
runs through the positive integers. 

The events in which we have a particular interest are of type (0 -+ a,) denoting the 
event that there is an open path from 0 to a,, the boundary of the box A,. 

The results of this section are certainly known, they go back to Fortuin (1972). See 
Preston (1974) for applications of Holley’s theorem and conelation inequalities. 

For Q 2 1 and m > n~ 

P,,,.+r(o-+ ani 2 / * m { O  -+ a d .  (5.1) 

This is just a special case of the following: 

Proposition 5 2 .  Let G be a finite graph and let H be a subgraph of G on the same vertex 
set. If p~ and f i ~  denote the random cluster measures induced by G, H respectively for 
any fixed p and Q 2 1, then for any subset A C E(H) 

A H @ )  < M A ) .  

This is a special case of a more general result: 

Proposition 5.3. For any monotone non-decreasing f on the edge set of C, if the value of 
f is determined by the state of the edges of X, then under the same conditions as above 

(f )p , ,  < (f)o. 
Since the quantities in (5.1) are probabilities and thus bounded, we can therefore define 

Q ) = i ? w ~ m { O - + a n i .  

Now form > n, it is trivial to see that 

PmIO -+ a d  < Pm(0 -+ L I .  

Consequently 

en(p ,  Q) < en-l(p. Q) 
and we define 

e h  Q )  = lim M P ,  Q) n-m 

to be the percolation probability of the model. 
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Accordingly, for Q 3 1, we can define the critical probability px(Q) by 

P H ( Q )  = i n f b  : .9(p,  Q) > 0). 

We know therefore that: 

(5.4) For Q > 1, p " ( Q )  is monotone nondecreasing in Q. 

Combining this with the explicit value for Q = 1, obtained by Kesten (1980), we have 
the known result, that 

p d Q )  3 for Q 5 1. (5.5) 

Following on from the techniques of ordinw percolation we now consider the expected 
size of a cluster. 

For Q 3 1, if ,y(p;Q) denotes the expected size of the cluster C through the origin in 
the random cluster model ~ ( p ,  Q), then 

X(P, Q) = (C) =-E LLW -+ YI 
ycZI 

where p is the limit measure, which is well defined for Q 3 1, by an argument analogous 
to the definition of .9 (see Aizenman and Grimmeti (1991)). 

We then define 

p r ( Q )  = infIp : X ( P ,  Q) = 001 

and note immediately that, as with the case Q = 1, we have the trivial relationship 
~~ 

p r ( Q )  < P H ( Q )  for Q 3 1. (5.6) 

I believe that equality holds in (5.6) and give some evidence in support of this in what 
follows. 

Note. In order to clarify. the relationship of the above with that of Aizenman et a1 (1988) 
and Aizenman and Grimmett (1991), it should be pointed out that we are working in the 
domain of free, not wired, boundary conditions. 

6. Sponge crossing probabilities 

The sponge percolation model introduced and developed in Seymour and Welsh (1978) has 
a certain interest in its own right but more importantly it tumed out to be a very useful tool 
in the proofs of various identities about critical probabilities in ordinary bond percolation, 
see for example Kesten (1980) and Wierman (1981). A very clear treatment is'given by 
Smythe and Wierman (1978) and it is their notation which we follow. 

The m x n sponge T ( m ,  n) consists of all vertices and bonds of the square lattice which 
are contained in the region where 1 < x < n and 1 < y < m. Each of the m vertices 
(1, y ) .  for 1 < y < m, on the left side of the sponge is considered to be a source site for 
fluid which then flows along open bonds in the sponge. 
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Construct a new graph G(m, n) from the m x n sponge T(m, n) as follows. Identify 
the vertices (1. y ) .  1 < y < m in a single new vertex X I .  Remove at1 edges which become 
loops. Similarly identify all vertices (n, y), 1 < y < m, in a new vertex x2. Add a special 
new edge e joining XI and r2. The graph G(m, n) is planar, and its planar dual graph C* 
is isomorphic to G(n - 1, m + 1). 

Now consider any assignment w of black and white colours to the edges of T(m, n). 
There is a path consisting only of white edges from one of the vertices (1, y), 1 < y < m, 
to one of (n, y ) .  1 < y < m, if and only if there is a cycle in C(m, n) consisting of the 
special edge e and otherwise white edges. But by the ma-flow min-cut theorem, either 
there is such a cycle in G(m,n), or there is a cycle in G* consisting of e and otherwise 
edges which are black in w, and not both. But since G* is isomorphic to G(n - 1, m + I), 
and black configurations occur according to the dual probability measure $, what we have 
shown is the following. 

Let Sm,&, Q )  denote the probability that in G(m, n) there is a black path joining the 
special vertices XI, xz under the measure fi,,,,” induced by p .  Q and G(m, n). Then: 

Theorem 6.1. For positive integers, m 2 1. n 2 2, and all p .  Q 0 

Suppose now that we define 

&(P- Q )  = $,~+I(P, Q).  

Then we have the following consequence of theorem 6.1. 

Corollary 6.2. For any a, and p, 0 < p < 1, Q >, 0 

A further consequence of this is that 

Corollary 6.4. For any positive integer n and Q 2 0 

Proof: Follows from (6.3) by solving the equation 

p = -  9 Q  
p + q Q  

for p .  
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Note, also, that if we are just interested in crossing the sponge T(m,  n )  rather than the 
graph G(m, n ) ,  we have the following consequences of proposition 5.2. Let [- T(m,  n ) )  
denote the event that there is a black path across the m x n sponge and for any supergraph H 
of T ( m ,  n )  let p ~ [ w  T ( m ,  n ) )  be its probability under the random cluster measure induced 
by H with p9 Q fixed. 

Let p = p(p, Q) be the limit measure and 

&(p ,  Q) = U n , n  -,,I)]. 

Lemma 6.6. For Q 2 I ,  S,,(,/Qi(l+ a)? Q )  f. 

Proof. Let p = f i  ( a / ( l  + a), Q )  and note that trivially 

pL(+ T(n ,n  - !)I 2 PIXI r* xz in G(n + k n ) }  

2 L G ( ~ + I , ~ ~ x I  +a in G(n + 1,n)l 

this last inequality is from proposition 5.2. And this last probability is g n ( a / ( l  + a). Q )  = &. 0 

7. Inequalities for the critical probabilities of the square lattice 

In ordinary (Q = I )  percolation on the square lattice the tour de force of 20 years effort 
was the result of Kesten (1980) that the critical probability 

L PH = PT = 5 .  

I believe that the following &extension of this result is true. 

(7.1) 

Conjecture 7.2. For Q 2 1, the critical probabilities p r ( Q )  and ~ H ( Q )  are equal and 
have a common value a / ( 1  +a). 

The conjecture is certainly true when Q = 1 by virtue of Kesten’s theorem that 
the critical probability of the square lattice is 4. When Q = 2, using the relation 
p = 1 - exp(-J), it corresponds to a critical value of sinh-’ 1 = 0.881 37 for the critical 
exponent J ,  agreeing with the Onsager solution to the king model (see Hammersley and 
Mazzarino (1983, p 209)). 

For integer Q 2 3 the critical value of p c ( Q )  given by the conjecture agrees with the 
critical points of the Potts model located by singularity based arguments, see for example 
Baxter (1982) or Hintermann et a1 (1978). However it does not appear easy to make 
these arguments rigorous in this context, and the situation seems not dissimilar from that in 
ordinary percolation when it took 16 years before Kesten (1980) and Wieman (1981) were 
able to give rigorous justifications of @e exact values obtained by Sykes and E s s ~  (1964). 

Theorem 7.3. For Q 2 1, the critical probabilities ~ T ( Q )  and ~ H ( Q )  satisfy 
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Conjecture (7.2) is that each of the above inequalities is an equality. I also believe that 
it is going to be hard to prove (see the remarks at the end of the paper) but as a partial step 
towards a proof I obtain the following Q-extension of the relation PT + PH 6 1 of ordinary 
square lattice percolation. 

Consider the family of functions f a  : [O. 11 + [O, I] defined for Q > 0 by 

For Q > 0, fa is monotone decreasing, and convex (Q 

Theorem 7.4. 

1 )  or concave ( Q  c 1). 

For Q > 1, px(Q) and p 7 ( Q )  are related by 

P ~ Q )  6 ~ Q ( P T ( Q ) ) .  

Proof of Theorem 7.3. First define ps(Q), yet a third critical probability, by 

p s ( Q )  = liminf(p 2 0 :  & ( p ,  Q) 0). 

Then we know from (6.6) that 

P ~ Q )  6 &/(I +A). (7.5) 

Our result will follow from showing that 

PT(Q) 6 ps(Q). (7.6) 
To prove this let B, denote the n x (n - 1) sponge and let 

R = [(x, y) : x = n  - 1, 1 6 y 6 n) 
be the set of vertices on the right border of B,,. For each vertex ( I ,  i). i 6 n,  let Ci(w) 
denote the cluster containing ( I ,  i). If p i p~ then the expected cluster size is finite. 

Hence, we have 

~ ~ ~ ~ ~ , ~ ~ ~ ~ l < ~ ~ ~ l ~ ~ l > ~ - ~ l  
< (ICil),J(n - 1). 

Also, since Q 2 1, we can use proposition 5.2 and write 

UP, Q) 6 PSI.[; ( I , i )  3 RI 
I d  
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But (Ci) < CO implies that this last sum tends to zero as n + CO and thus ~ T ( Q )  < ps(Q) 
as required. 

It remains to prove that for Q > 1 

This is the Q-analogue of one of the first exact results in percolation theory namely Harris’ 
theorem (Harris 1960) that in bond percolation on the square lattice the critical probability 
is at least i. I cannot see how to modify Harris’ proof to obtain (7.7), nor cari I base a 
proof on the proof of the same result by Smythe and Wierman (1978) since this depends 
on lemmas from Seymour and Welsh (1978) which do not appear easy to generalize for 
Q # 1. Instead I sketch a completely different proof. The argument is as follows. 

First we note that since Q > 1 ,  the main result of Gandolfi er a1 (1992) gives: 

(7.8) With probability one, if there is an infinite cluster it is unique. 

Now let pa = Jiz/(l  + a) and suppose that 6’(pa. Q) > 0. Then the argument of 
Zhang as given in Grimmett (1989, p 195) goes through, almost word for word, replacing 
the critical Bernoulli measure (p = i, Q = 1) with y ( a / ( I  fa), Q) and we get the 
contradiction that there almost surely exist two infinite (closed = white) clusters on the dual 

0 lattice. Hence the initial assumption O(p& Q) ? 0 is incorrect. 

Proof of Theorem 7.4. Fix Q > 1, let E > 0. let p r  = pr(Q)  and p = p r  - E ,  so  that^ 
f ( p )  > f ( p r ) .  

If R denotes the right border of the sponge T(2n, n )  then since Q > 1, we can use 
proposition 5.2 to get 

< 2nP,,(ICol 2 nl 

where CO denotes the cluster through the origin and y = y ( p ,  Q) is the limiting measure. 
The argument given by Smythe and Wierman (1978, pp 33-4) now goes through almost 
word for word with P,, replacing the standard (Bemoulli) probability they use, to  obtain the 
result that in the dual lattice (with in this case the dual measure b) there is strictly positive 
probability that the origin of the dual lattice belongs to an infinite cluster. 

Butthedualmeasureb=I.L(f(p),Q)andthuspH(Q) < f ( p ) .  Butsincep=pT-c 
0 

I conclude with a brief discussion of  the difficulties involved in trying to extend Kesten’s 

Although, when Q 2 I ,  the resulting I.L is an FKG measure and this is used extensively, 
all proofs that I know depend in some parl on being able to say that events depending on 
disjoint sets of arcs are independent-positive correlation is not enough.~  in p&cular, 

where E is arbitrary and f is continuous, the result follows. 

theorem (for Q = 1 )  to general Q 2 I .  . 
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annulus arguments and the second Borel-Cantelli theorem (or something like it) seem 
essential. 

Nevertheless, large chunks of the existing proofs do go through relatively unchanged 
and I see some hope. 

For the case 0 c Q < 1, the definitions of 0 and the corresponding critical probabilities 
have not even been given in this paper. They are harder to formulate and the FKG property, 
a basic tool in the preceding work fails in this domain. 

Note also that similar methods can be applied and inequalities obtained for the other 
planar lattices and for mixed (anisotropic) percolation in which bonds in different directions 
have different probabilities. For example suppose that the horizontal and vertical bonds of 
the square lattice have probabilities p ~ .  p2 respectively so that p, is given by 

where AH, (AV) are the sets of horizontal (vertical) edges of A,  and qi = 1 - pi. Then 
similar arguments would suggest a critical surface (as defined in Grimmett (1989)) given 
by 

( Q -  l ) p i p z - Q ( p ~ + ~ z ) + Q = O .  (7.9) 

Similarly, the above duality, and star-triangle techniques such as were used by Wierman 
(1981) for the classical percolation model and described in Wu (1982) for the Q-state Potts 
model, suggest that the critical probabilities pc = pJQ) for the random cluster model on 
the triangular and hexagonal lattices have to satisfy the following cubic equations. 

1, the critical probability should satisfy For the triangular lattice, and for Q 

p3(Q - 2) - 3pZ(Q - 1) + 3pQ = Q. (7.10) 

For the hexagonal lattice, and for Q > 1, the critical probability should satisfy 

(7.11) 3 2  P (Q - 3 8  + 1) - 3p2(Q2 - 2Q) + 3pQ(Q - 1) = Qz. 

However, proving any of (7.9H7.10) rigorously will be even more difficult. 
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